Analytical Modeling and Optimization of a Heat Sink Design for Passive Cooling of Solar PV Panel

Author:

AlAmri Fahad,AlZohbi Gaydaa,AlZahrani Mohammed,Aboulebdah Mohammed

Abstract

High temperature is the primary challenge in the development of solar photovoltaic (PV) systems in an arid climate. A rise in temperature diminishes the performance of the PV systems and shortens their lifespan. The goal of this manuscript is to develop an analytical model to predict the temperature of PV panels under a passive cooling system for an arid environment. Taking into consideration the link between solar panel temperature and its conversion efficiency, Kirchhoff’s and Ohm’s laws for a complex circuit were applied to calculate the heat flux in the solar panel system, and hence obtain the temperatures of each layer in the system. Closed-form analytical expressions for temperature, output power, and conversion efficiency of the solar panel were deduced and presented as functions of solar irradiance, ambient temperature, emissivity, wind velocity, tilt angle, and dimensions of fins. Comparison between the results presented in the literature and those predicted by the developed analytical model validated the presented model. Moreover, the length of the fins required for safe thermal operation of solar panels in harsh desert environment were also obtained from analysis. Furthermore, the effect of using such a cooling system on the temperature and efficiency of the solar panels was verified by using the developed model under real conditions in Dammam city during summer and winter seasons. The results showed that the optimized heat sink could raise the solar panel power by 8.7% during summer and by 6.5% during winter.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference40 articles.

1. US Solar Photovoltaic System Cost Benchmark: Q1 2018;Fu,2018

2. The Power to Change: Solar and Wind cost Reduction Potential to 2025;Taylor,2016

3. Environmental Impacts on the Performance of Solar Photovoltaic Systems

4. An overview of factors affecting the performance of solar PV systems;Vidyanandan;Energy Scan,2017

5. Socio-economic performance of a novel solar photovoltaic/loop-heat-pipe heat pump water heating system in three different climatic regions

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3