Changes in Soil Moisture, Temperature, and Salt in Rainfed Haloxylon ammodendron Forests of Different Ages across a Typical Desert–Oasis Ecotone

Author:

Gou Qianqian,Shen Changsheng,Wang Guohua

Abstract

Soil water and salt movement during the freeze–thaw period facilitate soil and water conservation and agroecological environment maintenance in the desert–oases transition zone of the Hexi Corridor; however, our understanding of soil salinization and the shifting water, heat, and salt states in soil ecosystems of Haloxylon ammodendron forests at different ages is poor. We analyzed the soil moisture, temperature, and salinity characteristics of Haloxylon ammodendron forests of different ages in the Hexi Corridor of Northwest China and determined their coupling. Our results indicated that shallow (0–120 cm) soil temperatures significantly correlated with air temperatures. With increased forest age, the soil freezing period shortened and the permafrost layer shallowed. Changes in soil temperature lagged those in air temperature, and this lag time increased with forest age and soil depth. With increases in forest age and planting years, the water in the shallow soil layer gradually declined, and the surface aggregation of salt increased. In deep soils (120–200 cm), both soil moisture and salinity increased with the number of planting years. Accordingly, the clay layer and deep root system of Haloxylonammodendron greatly influenced the transport of soil water and salt; and temperature is a key driving force for their transport. Thus, water, temperature, and salt content dynamics were synergetic.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference51 articles.

1. Research progress on the impact of climate change on water resources in the arid region of Northwest China;Chen;Acta Geogr. Sin.,2014

2. Ponder on the issues of water resources in the arid region of northwest China;Chen;Arid. Land. Geogr.,2012

3. The effect of hydrologic process changes on NDVI in the desert-oasis ecotone of the Hexi Corridor

4. Countermeasure of ecological recovery and ecological and environmental problems in the northwest region;Yang;Res. Soil Water Conserv.,2005

5. Land desertification control and ecological restoration in Northwestern China;Ma;Bull. Soil Water Conserv.,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3