Abstract
A novel inorganic–organic biosorbent, polyethyleneimine (PEI)-modified nanocellulose cross-linked with magnetic bentonite, was prepared for the removal of Cu(Ⅱ) from water. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) showed that the amino and carboxyl groups were successfully grafted onto the nanocellulose structure. The adsorption performance of Cu(Ⅱ) with various factors, using the biosorbent, was investigated. The results show that the adsorption equilibrium could be reached within a short time (10 min), and the adsorption capacity of Cu(Ⅱ) reached up to 757.45 mg/g. The adsorption kinetics and adsorption isotherms were well-fitted with the pseudo-second-order and the Freundlich isotherm models, respectively. The adsorption process of the composite is mainly controlled by chemisorption, and functional group chelation and electrostatic force were the adsorption mechanisms; pore filling also has a great influence on the adsorption of Cu(Ⅱ). It was found that the prepared modified nanocellulose composite has great potential for the removal of heavy metals from water.
Funder
Shaanxi Natural Science Fund
National Key Research and Development Program of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献