Malicious Activity Detection in Lightweight Wearable and IoT Devices Using Signal Stitching

Author:

Karabacak FatihORCID,Ogras Umit,Ozev Sule

Abstract

The integrated circuit (IC) manufacturing process involves many players, from chip/board design and fabrication to firmware design and installation. In today’s global supply chain, any of these steps are prone to interference from rogue players, creating a security risk. Therefore, manufactured devices need to be verified to perform only their intended operations since it is not economically feasible to control the supply chain and use only trusted facilities. This paper presents a detection technique for malicious activity that can stem from hardware or firmware Trojans. The proposed technique relies on (i) repetitious side-channel sample collection of the active device, (ii) time-domain stitching, and (iii) frequency domain analysis. Since finding a trusted sample is generally impractical, the proposed technique is based on self-referencing to remove the effects of environmental or device-to-device variation in the frequency domain. We first observe that the power spectrum of the Trojan activity is confined to a low-frequency band. Then, we exploit this fact to achieve self-referencing using signal detection theory. The proposed technique’s effectiveness is demonstrated through experiments on a wearable electronics prototype and system-on-chip (SoC) under a variety of practical scenarios. Experimental results show the proposed detection technique enables a high overall detection coverage for malicious activities of varying types with 0.8 s monitoring time overhead, which is negligible.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3