Differential Effects of Extracellular Matrix Glycoproteins Fibronectin and Laminin-5 on Dental Pulp Stem Cell Phenotypes and Responsiveness

Author:

Lee Hyungbin1,Bae Allen2,Kim John2,Kingsley Karl3ORCID

Affiliation:

1. Department of Advanced Education in Orthodontics, School of Medicine, University of Nevada—Las Vegas, Las Vegas, NV 89106, USA

2. Department of Clinical Sciences, School of Dental Medicine, University of Nevada—Las Vegas, Las Vegas, NV 89106, USA

3. Department of Biomedical Sciences, School of Dental Medicine, University of Nevada—Las Vegas, Las Vegas, NV 89106, USA

Abstract

Dental pulp stem cells (DPSCs) are mesenchymal stem cells (MSCs) with the potential to differentiate in a limited number of other tissue types. Some evidence has suggested the modulation of DPSC growth may be mediated, in part, by exogenous extracellular matrix (ECM) glycoproteins, including fibronectin (FN) and laminin-5 (LN5). Although preliminary research suggests that some ECM glycoproteins may work as functional biomaterials to modulate DPSC growth responses, the primary goal of this project is to determine the specific effects of FN and LN5 on DPSC growth and viability. Using an existing DPSC repository, n = 16 DPSC isolates were cultured and 96-well growth assays were performed, which revealed FN, LN5 and the combination of these were sufficient to induce statistically significant changes in growth among five (n = 5) DPSC isolates. In addition, the administration of FN (either alone or in combination) was sufficient to induce the expression of alkaline phosphatase (ALP) and dentin sialophosphoprotein (DSPP), while LN5 induced the expression of ALP only, suggesting differential responsiveness among DPSCs. Moreover, these responses appeared to correlate with the expression of MSC biomarkers NANOG, Oct4 and Sox2. These results add to the growing body of evidence suggesting that functional biomaterials, such as ECM glycoproteins FN and LN5, are sufficient to induce phenotypic and differentiation-specific effects in a specific subset of DPSC isolates. More research will be needed to determine which biomarkers or additional factors are necessary and sufficient to induce the differentiation and development of DPSCs ex vivo and in vitro for biomedical applications.

Funder

Office of Research at the University of Nevada, Las Vegas

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

Reference70 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3