Inter-Laboratory Study on Measuring the Surface Charge of Electrically Polarized Hydroxyapatite

Author:

Ubele-Kalnina Darta1,Nakamura Miho23,Gross Karlis Agris1

Affiliation:

1. Institute of Materials and Surface Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena Street 7, LV-1048 Riga, Latvia

2. Medicity Research Laboratory, Faculty of Medicine, University of Turku, Tykistökatu 6, 20520 Turku, Finland

3. Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 1010062, Japan

Abstract

Surface charges on implants improve integration into bone and so require a clear protocol for achieving a surface charge and comparable results from different laboratories. This study sintered hydroxyapatite (HAp) at one laboratory to remove the influence of the microstructure on surface charge and then polarized/depolarized the pellets at two different laboratories (in Tokyo and Riga). Surface charges on HAp pellets induced by electric polarization at 400 °C in a 5 kV/cm DC electric field were measured by the thermally stimulated depolarization current (TSDC) method as 6–9 µC/cm2. The surface charge results were comparable between laboratories and also agreed with previously documented values. Recommendations describe conditions for polarization and depolarization to generate a surface charge and repeatedly achieve a comparable outcome. A visual display of the polarization mechanisms and the contribution to surface charge point to further aspects that need further development.

Funder

Latvian Council of Science project, Freedom to Move

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3