Synthesis and Spectral Characterisation of Fabricated Cerium-Doped Magnesium Oxide Nanoparticles: Evaluation of the Antimicrobial Potential and Its Membranolytic Activity through Large Unilamellar Vesicles

Author:

Khatua Ashapurna1,Kumari Kajal2,Khatak Deepak1ORCID,Roy Annesha1,Bhatt Neelima1,Paul Bernard3ORCID,Naik Aparupa4,Patel Amiya Kumar4,Panigrahi Uttam Kumar5,Sahu Santosh Kumar5,Saravanan Muthupandian6ORCID,Meena Ramovatar1ORCID

Affiliation:

1. School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India

2. A.I. Virtanen Institute for Molecular Sciences, Univerisity of Eastern Finland, 70211 Kuopio, Finland

3. Institut Jules Guyot, University of Bourgogne, 21000 Dijon, France

4. School of Biotechnology and Bioinformatics, Sambalpur University, Odisha 757003, India

5. Department of Physics, Maharaja Sriram Chandra Bhanja Deo University, Odisha 757003, India

6. AMR and Nanotherapeutics Lab, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India

Abstract

Considerable attention has been given to Magnesium oxide nanoparticles lately due to their antimicrobial potential, low toxicity to humans, high thermal stability, biocompatibility, and low cost of production. However, their successful transformation into sustainable drugs is limited due to their low membrane permeability, which reduces their bioavailability in target cells. Herein we propose Cerium-doped magnesium oxide nanoparticles (MgOCeNPs) as a powerful solution to above mentioned limitations and are compared with MgO NPs for their membrane permeability and antimicrobial activity. Both pure and Ce-doped were characterized by various spectroscopic and microscopic techniques, in which an X-ray diffraction (XRD) examination reveals the lattice patterns for doped nanoparticles. Furthermore, Atomic Force Microscopy (AFM) revealed the three-dimensional (3D) structure and height of the nanoparticle. The crystal structure (FCC) of MgO did not change with Ce doping. However, microstructural properties like lattice parameter, crystallite size and biological activity of MgO significantly changed with Ce doping. In order to evaluate the antimicrobial potential of MgOCeNPs in comparison to MgO NPs and to understand the underlying mechanisms, the antibacterial activity was investigated against human pathogenic bacteria E. coli and P. aeruginosa, and antifungal activity against THY-1, a fungal strain. MgOCeNPs were studied by several methods, which resulted in a strong antibacterial and antifungal activity in the form of an elevated zone of inhibition, reduced growth curve, lower minimum inhibitory concentration (MIC80) and enhanced cytotoxicity in both bacterial and fungal strain as compared to MgO nanoparticles. The study of the growth curve showed early and prolonged stationary phase and early decline log phase. Both bacterial and fungal strains showed dose-dependent cytotoxicity with enhancement in intracellular reactive oxygen species (ROS) generation and formation of pores in the membrane when interacting with egg-phosphatidylcholine model Large Unilamellar Vesicles (LUVs). The proposed mechanism of MgOCeNPs toxicity evidently is membranolytic activity and induction of ROS production, which may cause oxidative stress-mediated cytotoxicity. These results confirmed that MgOCeNPs are a novel and very potent antimicrobial agent with a great promise of controlling and treating other microbes.

Funder

UGC-BSR Start-Up

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3