Affiliation:
1. Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
2. N.M. Emanuel Institute of Biochemical Physics RAS, Kosygin str. 4, 119334 Moscow, Russia
Abstract
Multidrug-resistant bacteria form serious problems in many areas, including medicine and the food industry. At the same time, great interest is shown in the transfer or enhancement of antimicrobial properties to various materials by modifying them with enzymes. The use of enzymes in biomaterials with antimicrobial properties is important because enzymes can be used as the main active components providing antimicrobial properties of functionalized composite biomaterials, or can serve as enhancers of the antimicrobial action of certain substances (antibiotics, antimicrobial peptides, metal nanoparticles, etc.) against cells of various microorganisms. Enzymes can simultaneously widen the spectrum of antimicrobial activity of biomaterials. This review presents the most promising enzymes recently used for the production of antibacterial materials, namely hydrolases and oxidoreductases. Computer modeling plays an important role in finding the most effective combinations between enzymes and antimicrobial compounds, revealing their possible interactions. The range of materials that can be functionalized using enzymes looks diverse. The physicochemical characteristics and functionalization methods of the materials have a significant impact on the activity of enzymes. In this context, fibrous materials are of particular interest. The purpose of this review is to analyze the current state of the art in this area.
Funder
State Task of Lomonosov Moscow State University
State Task of N.M. Emanuel Institute of Biochemical Physics RAS
Subject
Biomedical Engineering,Biomaterials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献