Analysis of Temperature Semi-Annual Oscillations (SAO) in the Middle Atmosphere

Author:

Shangguan Ming12ORCID,Wang Wuke345ORCID

Affiliation:

1. School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China

2. Hubei Subsurface Multi-Scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China

3. Department of Atmospheric Science, China University of Geosciences, Wuhan 430074, China

4. Centre for Severe Weather and Climate and Hydro-Geological Hazards, Wuhan 430074, China

5. Research Centre for Complex Air Pollution of Hubei Province, Wuhan 430074, China

Abstract

The middle atmosphere plays an important role in the research of various dynamical and energy processes. Microwave Limb Sounder (MLS), reanalyses and model simulations with NCAR’s Whole Atmosphere Community Climate Model (WACCM) data in the range between 100 and 0.1 hPa from 2005 to 2020 have been analyzed with a focus on the temperature semi-annual oscillations (SAO). Significant SAO of temperature is prominent in the tropical region (20°S–20°N) around 1–3 hPa, which is consistent with previous studies. We also found significant SAO in the northern hemisphere (NH) high latitudes between 8 and 0.3 hPa and southern hemisphere (SH) high latitudes between 0.5 and 0.1 hPa, which has been of less concern in previous studies. The thermal budget based on MERRA2 and simulations is used to explain the mechanism of SAO in the middle atmosphere. In the tropics, the two temperature peaks are mainly determined by radiative processes. In the NH high latitudes of the stratosphere, the temperature peak in January is mainly related to dynamical processes, while the temperature peak in July is determined by a combination of dynamical and radiative processes. In the NH high latitudes of the lower mesosphere, the first peak in June is primarily associated with dynamical and radiative processes, while the second peak in December is primarily associated with the dynamical processes. In the SH high latitudes of the lower mesosphere, the first temperature peak in July is mainly due to dynamical processes while the second temperature peak in December is mainly due to radiative processes. Various features are present in the SH and NH high latitude SAO in the lower mesosphere. Furthermore, we performed model simulations with and without SAO in sea surface temperatures (SST-SAO) to study the connection between SST and temperature SAO. WACCM6 results indicate that the SAO in the middle atmosphere is partially affected by the existence of an SST-SAO. By removing SAO in SST, the PSD magnitude of the SAO decreases in the tropical region and increases in the polar region. The amplitudes of total heating rates are also modified. The WACCM experiment confirms the relationship between SST-SAO and temperature SAO in the middle atmosphere.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities, China University of Geosciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3