Coupled Thorens and Soil Conservation Service Models for Soil Erosion Assessment in a Loess Plateau Watershed, China

Author:

Li Changjia12ORCID,Lu Tong12,Wang Shuai12,Xu Jiren34ORCID

Affiliation:

1. State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

2. Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

3. School of Geography, University of Leeds, Leeds LS2 9JT, UK

4. School of Interdisciplinary Studies, University of Glasgow, Dumfries DG1 4ZL, UK

Abstract

Assessing soil erosion in China’s severely eroded Loess Plateau is urgently needed but is usually limited by suitable erosion models and long-term field measurements. In this study, we coupled the Thorens and Soil Conservation Service (SCS) models to evaluate runoff and sediment yield during the 1980s and 2010s in the Xiaolihe watershed on the Loess Plateau. Results showed the proposed model framework had a satisfactory performance in modelling spatially distributed runoff and sediment yield. The Nash–Sutcliffe efficiency (NSE), percent bias (PBIAS) and the root mean square error-measured standard deviation ratio (RSR) were 0.93, 4.42% and 0.27 for monthly runoff; and 0.31, 62.31% and 0.82 for monthly sediment yield. The effects of land use changes on runoff and sediment yield were well captured by the SCS and Thorens models. The proposed modelling framework is distributed with a simple structure, requires relatively little data that can be obtained from public datasets, and can be used to predict runoff and sediment yield in other similar ungagged or poorly monitored watersheds. This work has important implications for runoff and erosion assessment in other arid and semi-arid regions, to derive runoff and erosion rates across large areas with scarce field measurements.

Funder

National Natural Science Foundation of China Project

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3