Drought Vulnerability Curves Based on Remote Sensing and Historical Disaster Dataset

Author:

Jia Huicong12ORCID,Chen Fang123,Du Enyu123,Wang Lei12ORCID

Affiliation:

1. International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China

2. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

As drought vulnerability assessment is fundamental to risk management, it is urgent to develop scientific and reasonable assessment models to determine such vulnerability. A vulnerability curve is the key to risk assessment of various disasters, connecting analysis of hazard and risk. To date, the research on vulnerability curves of earthquakes, floods and typhoons is relatively mature. However, there are few studies on the drought vulnerability curve, and its application value needs to be further confirmed and popularized. In this study, on the basis of collecting historical disaster data from 52 drought events in China from 2009 to 2013, three drought remote sensing indexes were selected as disaster-causing factors; the affected population was selected to reflect the overall disaster situation, and five typical regional drought vulnerability curves were constructed. The results showed that (1) in general, according to the statistics of probability distribution, most of the normalized difference vegetation index (NDVI) and the temperature vegetation drought index (TVDI) variance ratios were concentrated between 0 and ~0.15, and most of the enhanced vegetation index (EVI) variance ratios were concentrated between 0.15 and ~0.6. From a regional perspective, the NDVI and EVI variance ratio values of the northwest inland perennial arid area (NW), the southwest mountainous area with successive years of drought (SW), and the Hunan Hubei Jiangxi area with sudden change from drought to waterlogging (HJ) regions were close and significantly higher than the TVDI variance ratio values. (2) Most of the losses (drought at-risk populations, DRP) were concentrated in 0~0.3, with a cumulative proportion of about 90.19%. At the significance level, DRP obeys the Weibull distribution through hypothesis testing, and the parameters are optimal. (3) The drought vulnerability curve conformed to the distribution rule of the logistic curve, and the line shape was the growth of the loss rate from 0 to 1. It was found that the arid and ecologically fragile area in the farming pastoral ecotone (AP) region was always a high-risk area with high vulnerability, which should be the focus of drought risk prevention and reduction. The study reduces the difficulty of developing the vulnerability curve, indicating that the method can be widely used to other regions in the future. Furthermore, the research results are of great significance to the accurate drought risk early warning or whether to implement the national drought disaster emergency rescue response.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3