Observed Quasi 16-Day Wave by Meteor Radar over 9 Years at Mengcheng (33.4°N, 116.5°E) and Comparison with the Whole Atmosphere Community Climate Model Simulation

Author:

Yang Chengyun1ORCID,Lai Dexin1ORCID,Yi Wen12ORCID,Wu Jianfei1,Xue Xianghui123,Li Tao123ORCID,Chen Tingdi12,Dou Xiankang13

Affiliation:

1. CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026, China

2. Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

3. Hefei National Laboratory for the Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China

Abstract

In this study, we present nearly 9 years of the quasi16-day wave (Q16DW) in the mesosphere and lower thermosphere (MLT) wind at middle latitudes based on long-term wind observations between April 2014 and December 2022 by the Mengcheng (33.4°N, 116.5°E) meteor radar. There are two maxima in the Q16DW amplitude in the winter and early spring (near the equinox) and a minimum during the summer. The Q16DWs are relatively weak in meridional winds with no obvious seasonal variations. On average, the phase of the zonal Q16DW is larger than the meridional components with a mean difference that is slightly less than 90°, which suggests that there are orthogonal relationships between them. During the bursts of Q16DW, the periods in winter range between 15 and 18 d, whereas in summer, the periods of the planetary waves have a wider range. The wintertime Q16DW anomalies are, on average, amplified when the zonal wind shear anomalies increase, suggesting that barotropic instability may be a source of the Q16DW. Although the interannual variability of Q16DW amplitudes has been suggested observationally, there is no significant relationship between the interannual wind shear variability and Q16DW at most altitudes.

Funder

the National Natural Science Foundation of China Grants

the B-type Strategic Priority Program of the Chinese Academy of Sciences

China’s National Space Administration

the Fundamental Research Funds for the Central Universities

the Anhui Provincial Natural Science Foundation

the Joint Open Fund of Mengcheng National Geophysical Observatory

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3