Mapping Land Use/Land Cover Changes and Forest Disturbances in Vietnam Using a Landsat Temporal Segmentation Algorithm

Author:

Shimizu Katsuto1ORCID,Murakami Wataru2,Furuichi Takahisa2,Estoque Ronald C.3ORCID

Affiliation:

1. Department of Forest Management, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba 305-8687, Ibaraki, Japan

2. Department of Disaster Prevention, Meteorology and Hydrology, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba 305-8687, Ibaraki, Japan

3. Center for Biodiversity and Climate Change, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba 305-8687, Ibaraki, Japan

Abstract

Accurately mapping land use/land cover changes (LULCC) and forest disturbances provides valuable information for understanding the influence of anthropogenic activities on the environment at regional and global scales. Many approaches using satellite remote sensing data have been proposed for characterizing these long-term changes. However, a spatially and temporally consistent mapping of both LULCC and forest disturbances at medium spatial resolution is still limited despite their critical contributions to the carbon cycle. In this study, we examined the applicability of Landsat time series temporal segmentation and random forest classifiers to mapping LULCC and forest disturbances in Vietnam. We used the LandTrendr temporal segmentation algorithm to derive key features of land use/land cover transitions and forest disturbances from annual Landsat time series data. We developed separate random forest models for classifying land use/land cover and detecting forest disturbances at each segment and then derived LULCC and forest disturbances that coincided with each other during the period of 1988–2019. The results showed that both LULCC classification and forest disturbance detection achieved low accuracy in several classes (e.g., producer’s and user’s accuracies of 23.7% and 78.8%, respectively, for forest disturbance class); however, the level of accuracy was comparable to that of existing datasets using the same reference samples in the study area. We found relatively high confusion between several land use/land cover classes (e.g., grass/shrub, forest, and cropland) that can explain the lower overall accuracies of 67.6% and 68.4% in 1988 and 2019, respectively. The mapping of forest disturbances and LULCC suggested that most forest disturbances were followed by forest recovery, not by transitions to other land use/land cover classes. The landscape complexity and ephemeral forest disturbances contributed to the lower classification and detection accuracies in this study area. Nevertheless, temporal segmentation and derived features from LandTrendr were useful for the consistent mapping of LULCC and forest disturbances. We recommend that future studies focus on improving the accuracy of forest disturbance detection, especially in areas with subtle landscape changes, as well as land use/land cover classification in ambiguous and complex landscapes. Using more training samples and effective variables would potentially improve the classification and detection accuracies.

Funder

Forestry Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3