Spatio-Temporal Variations in Phytoplankton Communities in Sediment and Surface Water as Reservoir Drawdown—A Case Study of Pengxi River in Three Gorges Reservoir, China

Author:

Ouyang Wenjuan,Li Zhe,Yang Jixiang,Lu Lunhui,Guo Jinsong

Abstract

The resting stages of phytoplankton are usually regarded as the seed bank and source of harmful algal blooms because of the recruitment of phytoplankton from sediment to the water column under suitable environmental conditions. Information about resting stages of phytoplankton is abundant in shallow lakes and littoral sea; yet, studies on river–reservoir systems are rare. The river–reservoir continuum shows a unique structuring of longitudinal gradients of hydrological and hydrodynamic conditions. We hypothesized that the seed bank and algal blooms in reservoirs are influenced by the hydrodynamic conditions of each reservoir. We used Illumina Miseq sequencing to examine the spatio-temporal variation in the phytoplankton community in the sediment as reservoir drawdown and in surface water during algal blooms in Pengxi River, a tributary of China’s Three Gorges Reservoir. The results show that the cyanobacteria community in sediment is significantly influenced by temperature, total carbon, maximum flow velocity, and total phosphorous, the eukaryotic phytoplankton community in sediment is significantly influenced by total phosphorous, temperature, total carbon, maximum flow velocity, and total nitrogen. Additionally, the dominant species in sediment is significantly different from that in surface water during algal blooms. Our results suggest that the dominant species in surface water during algal blooms is more influenced by the environmental factors and hydrodynamic conditions in the water column than the seeds in the sediment. These findings are fundamental for further research on the influence of hydrodynamic conditions on algal blooms in artificially regulated river-reservoir systems.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3