Measurement of a Vibration on a Robotic Vehicle

Author:

Klimenda FrantisekORCID,Cizek Roman,Suszynski MarcinORCID

Abstract

This article deals with the design and construction of a robotic vehicle. The first part of the paper focuses on the selection of suitable variants for the robotic vehicle arrangement, i.e., frame, electric motors with gearboxes, wheels, steering and accumulators. Based on the selection of individual components, the robotic vehicle was built. An important part of the robotic vehicle was the design of the suspension of the front wheels. The resulting shape of the springs was experimentally developed from several design variants and subsequently produced by an additive manufacturing process. The last part of article is devoted to the experimental measurement of the acceleration transfer to the upper part of the frame during the passage of the robotic vehicle over differently arranged obstacles. Experimental measurements measured the accelerations that are transferred to the top of the robotic vehicle frame when the front wheels of the vehicle cross over the obstacle (obstacles). The maximum acceleration values are 0.0588 m/s2 in the x-axis, 0.0149 m/s2 in the y-axis and 0.5755 m/s2 in the z-axis. This experimental solution verifies the stiffness of the designed frame and the damping effect of the selected material of the designed springs on the front wheels of the robotic vehicle.

Funder

Internal Grant Agency of Jan Evangelista Purkyne University in Usti nad Labem, Czech Republic

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3