Both Forest Harvesting and Hydropower Dams Yielded Negative Impact on Low Flow Regimes in the Zagunao River Watershed, Southwest China

Author:

Jiang Zhiwei,Zhang Mingfang,Hou YipingORCID

Abstract

Forest harvesting and hydropower dams can significantly affect flow regimes (magnitude, timing, duration, frequency, and variability), resulting in changes in degraded aquatic ecosystems and unstable water supply. Despite numerous studies on the effects of forest harvesting on mean flows, the impact of forest harvesting on flow regimes has been less investigated. A great difficulty lies in separating the hydrological effect of forest harvesting from that of climate variability and other watershed disturbances such hydropower dams. In this study, the Upper Zagunao River watershed (2242 km2) was selected as an example to provide a quantitative assessment of the effects of forest harvesting and hydropower dams on low flow regimes. The key findings include: (1) Forest harvesting led to a significant reduction in the magnitude and return period of low flows, and a significant increment in the variability and duration of low flows; (2) the recovery of low flow regimes occurred 40 years after forest harvesting as forest recovery processed; and (3) hydropower dams caused significant impact on all components of low flow regimes, e.g., a reduction in the magnitude, return period, and timing of low flows, and an increment in the variability and duration of low flows. Our findings highlight the negative impact of both forest harvesting and hydropower dams on low flow regimes in the Upper Zagunao River watershed. A watershed management strategy for offsetting the negative effect of hydropower dams on low flow regimes by restoring hydrological functions of subalpine forests is highly recommended in subalpine watersheds of the Upper Yangtze River.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3