Removal of Cesium and Strontium Ions from Aqueous Solutions by Thermally Treated Natural Zeolite

Author:

Șenilă Marin1ORCID,Neag Emilia1,Tănăselia Claudiu1ORCID,Șenilă Lacrimioara1ORCID

Affiliation:

1. INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania

Abstract

The radionuclides of cesium (Cs) and strontium (Sr) are dangerous products of nuclear fission that can be accidentally released into wastewater. In the present work, the capacity of thermally treated natural zeolite (NZ) from Macicasu (Romania) to remove Cs+ and Sr2+ ions from aqueous solutions in batch mode was investigated by contacting different zeolite quantities (0.5, 1, and 2 g) of 0.5–1.25 mm (NZ1) and 0.1–0.5 mm (NZ2) particle size fractions with 50 mL working solutions of Cs+ and Sr2+ (10, 50, and 100 mg L−1 initial concentrations) for 180 min. The concentration of Cs in the aqueous solutions was determined by inductively coupled plasma mass spectrometry (ICP-MS), whereas the Sr concentration was determined by inductively coupled plasma optical emission spectrometry (ICP-OES). The removal efficiency of Cs+ varied between 62.8 and 99.3%, whereas Sr2+ ranged between 51.3 and 94.5%, depending on the initial concentrations, the contact time, the amount, and particle size of the adsorbent material. The sorption of Cs+ and Sr2+ was analyzed using the nonlinear form of Langmuir and Freundlich isotherm models and pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic models. The results indicated that the sorption kinetics of Cs+ and Sr2+ on thermally treated natural zeolite was described by the PSO kinetic model. Chemisorption dominates the retention of both Cs+ and Sr2+ by strong coordinate bonds with an aluminosilicate zeolite skeleton.

Funder

Ministry of Research, Innovation and Digitization

MCID

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3