Nanocrystalline Alumina-Zirconia-Based Eutectic Ceramics Fabricated with High-Energy Beams: Principle, Solidification Techniques, Microstructure and Mechanical Properties

Author:

Wang Zhi-Gang12,Zhang Yun-Zhuo2,Ouyang Jia-Hu2ORCID,Song Xi-Wen1,Xie Min1,Wang Ya-Ming2,Wang Yu-Jin2

Affiliation:

1. School of Materials and Metallurgy, Inner Mongolia University of Science & Technology, Baotou 014010, China

2. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

Abstract

Nanocrystalline alumina-zirconia-based eutectic ceramics fabricated with high-energy beams and composed of ultrafine, three-dimensionally entangled, single-crystal domains are a special category of eutectic oxides that exhibit exceptionally high-temperature mechanical properties, such as strength and toughness as well as creep resistance. This paper aims to provide a comprehensive review on the basic principles, advanced solidification processes, microstructure and mechanical properties of alumina-zirconia-based eutectic ceramics, with particular attention to the status of the art on a nanocrystalline scale. Some basic principles of coupled eutectic growth are first introduced based on previously reported models, followed by concise introduction of solidification techniques and the control strategy of solidification behavior from the processing variables. Then, the microstructural formation of nanoeutectic structure is elucidated with regard to different hierarchical scales, and mechanical properties such as hardness, flexural and tensile strength, fracture toughness and wear resistance are discussed in detail for a comparative study. Nanocrystalline alumina-zirconia-based eutectic ceramics with unique microstructural and compositional characteristics have been produced with high-energy beam-based processes, and in many cases, promising improvements in mechanical performance have been reported as contrasting with conventional eutectic ceramics.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Inner Mongolia

Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region

Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region

Fundamental Research Funds for Inner Mongolia University of Science & Technology

Scientific Research Foundation for Introducing Talents of Public Institutions at The Same Level of Inner Mongolia Autonomous Region

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3