Experimental Study on Effects of Triggering Modes on Thermal Runaway Characteristics of Lithium-Ion Battery

Author:

Dong Yuanjin1,Meng Jian1,Sun Xiaomei1,Zhao Peidong1,Sun Peng1,Zheng Bin1

Affiliation:

1. College of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255049, China

Abstract

As an important component of new energy vehicles, the safety of lithium-ion batteries has attracted extensive attention. To reveal the mechanism and characteristics of ternary lithium-ion batteries under different trigger modes, an experimental system was established. The effects of different trigger modes on battery surface temperature, battery internal temperature, injection time, and battery voltage were analyzed. Among them, acupuncture, overheating, and overcharging are used as trigger conditions for mechanical, thermal, and electrical abuse. The results show that the injection time and surface peak temperature are positively correlated with the energy input before thermal runaway. Before the cell triggers abuse, the more input energy, the higher the cell surface temperature, the more serious the thermal runaway, and the higher the damage to the surrounding battery system. Under the same conditions, the intensity and damage degree of overcharge thermal runaway are greater than those of internal short circuit and overtemperature. The abnormal change of voltage suddenly rising and rapidly falling can be used as a condition to judge whether overcharge thermal runaway occurs. Finally, according to the temperature curves at different positions, the thermal diffusion law under different abuse conditions is summarized, which provides a basis for the safety design of the battery module.

Funder

Shandong Provincial Natural Science Foundation, China

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3