Abstract
Energy storage systems play a key role in the rise of distributed power generation systems, hence there is great interest in extending their lifetimes, which are directly related to DC current ripple. One of the ripple sources is the low-frequency active power fluctuations under unbalanced and distorted grid voltage conditions. Therefore, this paper addresses a multifrequency control strategy where the harmonic reference currents are calculated to reduce harmonic active power oscillations. The stationary reference frame (StRF) approach taken here improves the precision and computational time of the current reference calculation method. Additionally, in order to ensure safe converter operation when a multifrequency reference current is provided, a computational efficient peak current saturator is applied while avoiding signal distortion every time step. If the injected current harmonic distortion is to be minimized, which is a feature included in this work, the peak current saturator is a necessary requirement. Active power ripple is reduced even with frequency variations in the grid voltage using a well-known frequency-adaptive scheme. The simulation and experimental results prove the optimized performance for the control objective: power ripple reduction with minimum current harmonic distortion.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献