Evolution of Brains and Computers: The Roads Not Taken

Author:

Solé RicardORCID,Seoane Luís F.ORCID

Abstract

When computers started to become a dominant part of technology around the 1950s, fundamental questions about reliable designs and robustness were of great relevance. Their development gave rise to the exploration of new questions, such as what made brains reliable (since neurons can die) and how computers could get inspiration from neural systems. In parallel, the first artificial neural networks came to life. Since then, the comparative view between brains and computers has been developed in new, sometimes unexpected directions. With the rise of deep learning and the development of connectomics, an evolutionary look at how both hardware and neural complexity have evolved or designed is required. In this paper, we argue that important similarities have resulted both from convergent evolution (the inevitable outcome of architectural constraints) and inspiration of hardware and software principles guided by toy pictures of neurobiology. Moreover, dissimilarities and gaps originate from the lack of major innovations that have paved the way to biological computing (including brains) that are completely absent within the artificial domain. As it occurs within synthetic biocomputation, we can also ask whether alternative minds can emerge from A.I. designs. Here, we take an evolutionary view of the problem and discuss the remarkable convergences between living and artificial designs and what are the pre-conditions to achieve artificial intelligence.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference201 articles.

1. Cognition All the Way Down. Aeon Essayshttps://ase.tufts.edu/cogstud/dennett/papers/Levin_Dennett_Aeon.pdf

2. Does predictive coding have a future?

3. Of Flies, Mice, and Men;Jacob,1998

4. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects

5. Information theory, predictability and the emergence of complex life

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3