Finite Volume Method Modeling of Heat Transfer in Acoustic Enclosure for Machinery

Author:

Wróbel JakubORCID,Warzyńska UrszulaORCID

Abstract

This paper deals with the problem of heat accumulation in acoustic enclosures. Increased noise levels at production sites or manufacturing lines force the application of acoustic enclosures. Effective noise reduction due to enclosures often comes with the additional thermal insulation of the device, which in many cases causes a strong increase in the device operation temperature. This paper presents the methodology of thermal phenomena numerical modeling based on the potential influence of acoustic enclosures on the increase in device operation temperature. The proposed model consists of an original acoustic enclosure concept design, and the numerical modeling is based on the computational fluid dynamics FVM (finite volume method) conducted in Ansys Fluent. The research comprised a set of simulations at different air flow rates of 52.5 m3/h, 105 m3/h, 210 m3/h and 420 m3/h at the enclosure inlet. The analysis carried out on the basis of flow paths and temperature distribution plots inside the enclosure led to the conclusion that the expected, analytically calculated minimum volumetric flow rate is not sufficient to effectively cool the investigated device to the required temperature of 26 °C, and higher air flow rates should be applied. Simulation results indicated that the numerical tools can be useful in the prediction of the heat exchange process, as well as in the selection of an appropriate source and location of cooling.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3