Unlocking Mutual Gains—An Experimental Study on Collaborative Autonomous Driving in Urban Environment

Author:

Malik Sumbal12ORCID,Khan Manzoor Ahmed12ORCID,El-Sayed Hesham12ORCID,Khan Muhammad Jalal12ORCID

Affiliation:

1. College of Information Technology, United Arab Emirates University, Abu Dhabi 15551, United Arab Emirates

2. Emirates Center for Mobility Research (ECMR), United Arab Emirates University, Abu Dhabi 15551, United Arab Emirates

Abstract

Convoy driving, a specialized form of collaborative autonomous driving, offers a promising solution to the multifaceted challenges that transportation systems face, including traffic congestion, pollutant emissions, and the coexistence of connected autonomous vehicles (CAVs) and human-driven vehicles on the road, resulting in mixed traffic flow. While extensive research has focused on the collective societal benefits of convoy driving, such as safety and comfort, one critical aspect that has been overlooked is the willingness of individual vehicles to participate in convoy formations. While the collective benefits are evident, individual vehicles may not readily embrace this paradigm shift without explicit tangible benefits and incentives to motivate them. Moreover, the objective of convoy driving is not solely to deliver societal benefits but also to provide incentives and reduce costs at the individual level. Therefore, this research bridges this gap by designing and modeling the societal benefits, including traffic flow optimization and pollutant emissions, and individual-level incentives necessary to promote convoy driving. We model a fundamental diagram of mixed traffic flow, considering various factors such as CAV penetration rates, coalition intensity, and coalition sizes to investigate their relationships and their impact on traffic flow. Furthermore, we model the collaborative convoy driving problem using the coalitional game framework and propose a novel utility function encompassing incentives like car insurance discounts, traffic fine reductions, and toll discounts to encourage vehicle participation in convoys. Our experimental findings emphasize the need to strike a balance between CAV penetration rate, coalition intensity, size, and speed to realize the benefits of convoy driving at both collective and individual levels. This research aims to align the interests of road authorities seeking sustainable transportation systems and individual vehicle owners desiring tangible benefits, envisioning a future where convoy driving becomes a mutually beneficial solution.

Funder

ASPIRE Award for Research Excellence

Sandooq Al Watan research project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3