Insights into Insulin Resistance and Calcification in the Myocardium in Type 2 Diabetes: A Coronary Artery Analysis

Author:

Martín-Saladich Queralt12ORCID,Simó Rafael34ORCID,Aguadé-Bruix Santiago1ORCID,Simó-Servat Olga34,Aparicio-Gómez Carolina1,Hernández Cristina34,Ramirez-Serra Clara5,Pizzi María Nazarena67,Roque Albert168,González Ballester Miguel A.29ORCID,Herance José Raul110ORCID

Affiliation:

1. Medical Molecular Imaging Research Group, Nuclear Medicine, Radiology and Cardiology Departments, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Autonomous University Barcelona, 08035 Barcelona, Spain

2. BCN Medtech, Department of Information and Communication Technologies, Pompeu Fabra University, 08018 Barcelona, Spain

3. Diabetes and Metabolism Research Group, VHIR, Department of Endocrinology, Vall d’Hebron University Hospital, Autonomous University Barcelona, 08035 Barcelona, Spain

4. Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain

5. Clinical Biochemistry Research Group, Vall d’Hebron Research Institute (VHIR), Biochemical Core Facilities, Vall d’Hebron University Hospital, Autonomous University Barcelona, 08035 Barcelona, Spain

6. Department of Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain

7. Cardiology Department, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron University Hospital, 08035 Barcelona, Spain

8. Radiology Department, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron University Hospital, 08035 Barcelona, Spain

9. Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain

10. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), Instituto de Salud Carlos III, 28029 Madrid, Spain

Abstract

Type 2 diabetes (T2D) is responsible for high incidence of cardiovascular (CV) complications leading to heart failure. Coronary artery region-specific metabolic and structural assessment could provide deeper insight into the extent of the disease and help prevent adverse cardiac events. Therefore, in this study, we aimed at investigating such myocardial dynamics for the first time in insulin-sensitive (mIS) and insulin-resistant (mIR) T2D patients. We targeted global and region-specific variations using insulin sensitivity (IS) and coronary artery calcifications (CACs) as CV risk factor in T2D patients. IS was computed using myocardial segmentation approaches at both baseline and after an hyperglycemic–insulinemic clamp (HEC) on [18F]FDG-PET images using the standardized uptake value (SUV) (ΔSUV = SUVHEC − SUVBASELINE) and calcifications using CT Calcium Scoring. Results suggest that some communicating pathways between response to insulin and calcification are present in the myocardium, whilst differences between coronary arteries were only observed in the mIS cohort. Risk indicators were mostly observed for mIR and highly calcified subjects, which supports previously stated findings that exhibit a distinguished exposure depending on the impairment of response to insulin, while projecting added potential complications due to arterial obstruction. Moreover, a pattern relating calcification and T2D phenotypes was observed suggesting the avoidance of insulin treatment in mIS but its endorsement in mIR subjects. The right coronary artery displayed more ΔSUV, whilst plaque was more present in the circumflex. However, differences between phenotypes, and therefore CV risk, were associated to left descending artery (LAD) translating into higher CACs regarding IR, which could explain why insulin treatment was effective for LAD at the expense of higher likelihood of plaque accumulation. Personalized approaches to assess T2D may lead to more efficient treatments and risk-prevention strategies.

Funder

Carlos III Health Institute and the European Regional Development Fund

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3