Proximity Labeling to Identify β-Arrestin1 Binding Partners Downstream of Ligand-Activated G Protein-Coupled Receptors

Author:

Zhuo Ya1,Robleto Valeria L.1ORCID,Marchese Adriano1

Affiliation:

1. Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA

Abstract

β-arrestins are multifaceted adaptor proteins that regulate various aspects of G protein-coupled receptor (GPCR) signaling. β-arrestins are recruited to agonist-activated and phosphorylated GPCRs at the plasma membrane, thereby preventing G protein coupling, while also targeting GPCRs for internalization via clathrin-coated pits. In addition, β-arrestins can activate various effector molecules to prosecute their role in GPCR signaling; however, the full extent of their interacting partners remains unknown. To discover potentially novel β-arrestin interacting partners, we used APEX-based proximity labeling coupled with affinity purification and quantitative mass spectrometry. We appended APEX in-frame to the C-terminus of β-arrestin1 (βarr1-APEX), which we show does not impact its ability to support agonist-stimulated internalization of GPCRs. By using coimmunoprecipitation, we show that βarr1-APEX interacts with known interacting proteins. Furthermore, following agonist stimulation βarr1-APEX labeled known βarr1-interacting partners as assessed by streptavidin affinity purification and immunoblotting. Aliquots were prepared in a similar manner and analyzed by tandem mass tag labeling and high-content quantitative mass spectrometry. Several proteins were found to be increased in abundance following GPCR stimulation. Biochemical experiments confirmed two novel proteins that interact with β-arrestin1, which we predict are novel ligand-stimulated βarr1 interacting partners. Our study highlights that βarr1-APEX-based proximity labeling represents a valuable approach to identifying novel players involved in GPCR signaling.

Funder

National Institute of General Medical Sciences

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3