Survey of Protein Sequence Embedding Models

Author:

Tran Chau1,Khadkikar Siddharth2,Porollo Aleksey345ORCID

Affiliation:

1. Department of Computer Science, University of Cincinnati, Cincinnati, OH 45219, USA

2. Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH 44106, USA

3. Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA

4. Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA

5. Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45267, USA

Abstract

Derived from the natural language processing (NLP) algorithms, protein language models enable the encoding of protein sequences, which are widely diverse in length and amino acid composition, in fixed-size numerical vectors (embeddings). We surveyed representative embedding models such as Esm, Esm1b, ProtT5, and SeqVec, along with their derivatives (GoPredSim and PLAST), to conduct the following tasks in computational biology: embedding the Saccharomyces cerevisiae proteome, gene ontology (GO) annotation of the uncharacterized proteins of this organism, relating variants of human proteins to disease status, correlating mutants of beta-lactamase TEM-1 from Escherichia coli with experimentally measured antimicrobial resistance, and analyzing diverse fungal mating factors. We discuss the advances and shortcomings, differences, and concordance of the models. Of note, all of the models revealed that the uncharacterized proteins in yeast tend to be less than 200 amino acids long, contain fewer aspartates and glutamates, and are enriched for cysteine. Less than half of these proteins can be annotated with GO terms with high confidence. The distribution of the cosine similarity scores of benign and pathogenic mutations to the reference human proteins shows a statistically significant difference. The differences in embeddings of the reference TEM-1 and mutants have low to no correlation with minimal inhibitory concentrations (MIC).

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference21 articles.

1. The language of proteins: Nlp, machine learning & protein sequences;Ofer;Comput. Struct. Biotechnol. J.,2021

2. Long short-term memory;Hochreiter;Neural. Comput.,1997

3. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., and Polosukhin, I. (2017, January 4–9). Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA.

4. Heinzinger, M., Elnaggar, A., Wang, Y., Dallago, C., Nechaev, D., Matthes, F., and Rost, B. (2019). Modeling aspects of the language of life through transfer-learning protein sequences. BMC Bioinform., 20.

5. Unsupervised protein embeddings outperform hand-crafted sequence and structure features at predicting molecular function;Makrodimitris;Bioinformatics,2021

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3