Quiescent Cancer Cells—A Potential Therapeutic Target to Overcome Tumor Resistance and Relapse

Author:

Lindell Emma1,Zhong Lei1,Zhang Xiaonan1ORCID

Affiliation:

1. Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden

Abstract

Quiescent cancer cells (QCCs) are nonproliferating cells arrested in the G0 phase, characterized by ki67low and p27high. QCCs avoid most chemotherapies, and some treatments could further lead to a higher proportion of QCCs in tumors. QCCs are also associated with cancer recurrence since they can re-enter a proliferative state when conditions are favorable. As QCCs lead to drug resistance and tumor recurrence, there is a great need to understand the characteristics of QCCs, decipher the mechanisms that regulate the proliferative–quiescent transition in cancer cells, and develop new strategies to eliminate QCCs residing in solid tumors. In this review, we discussed the mechanisms of QCC-induced drug resistance and tumor recurrence. We also discussed therapeutic strategies to overcome resistance and relapse by targeting QCCs, including (i) identifying reactive quiescent cancer cells and removing them via cell-cycle-dependent anticancer reagents; (ii) modulating the quiescence-to-proliferation switch; and (iii) eliminating QCCs by targeting their unique features. It is believed that the simultaneous co-targeting of proliferating and quiescent cancer cells may ultimately lead to the development of more effective therapeutic strategies for the treatment of solid tumors.

Funder

Barncancerfonden

Göran Gustafsson

Jeansson Foundations

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference120 articles.

1. The American Cancer Society’s Facts & Figures: 2020 Edition;Viale;J. Adv. Pract. Oncol.,2020

2. Research progress on therapeutic targeting of quiescent cancer cells;Zhang;Artif. Cells Nanomed. Biotechnol.,2019

3. A restricted cell population propagates glioblastoma growth after chemotherapy;Chen;Nature,2012

4. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations;Sharma;Cell,2010

5. Metastatic Latency and Immune Evasion through Autocrine Inhibition of WNT;Malladi;Cell,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3