Involvement of Mast-Cell-Tryptase- and Protease-Activated Receptor 2—Mediated Signaling and Urothelial Barrier Dysfunction with Reduced Uroplakin II Expression in Bladder Hyperactivity Induced by Chronic Bladder Ischemia in the Rat

Author:

Akaihata Hidenori1,Matsuoka Kanako1ORCID,Hata Junya1,Harigane Yuki1,Yaginuma Kei1,Endo Yu1,Imai Hitomi1,Matsuoka Yuta1,Onagi Akifumi1,Tanji Ryo1,Honda-Takinami Ruriko1ORCID,Hoshi Seiji1ORCID,Koguchi Tomoyuki1,Sato Yuichi1,Kataoka Masao1,Uemura Motohide1,Igawa Yasuhiko2,Kojima Yoshiyuki1

Affiliation:

1. Department of Urology, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan

2. Department of Urology, Nagano Prefectural Shinshu Medical Center, 1332 Suzaka, Nagano 382-8577, Japan

Abstract

We aimed to investigate the relationship between mast cell (MC) infiltration into the bladder with urothelial barrier dysfunction and bladder hyperactivity in a chronic bladder ischemia (CBI) rat model. We compared CBI rats (CBI group; n = 10) with normal rats (control group; n = 10). We measured the expression of mast cell tryptase (MCT) and protease-activated receptor 2 (PAR2), which are correlated with C fiber activation via MCT, and Uroplakins (UP Ia, Ib, II and III), which are critical to urothelial barrier function, via Western blotting. The effects of FSLLRY-NH2, a PAR2 antagonist, administered intravenously, on the bladder function of CBI rats were evaluated with a cystometrogram. In the CBI group, the MC number in the bladder was significantly greater (p = 0.03), and the expression of MCT (p = 0.02) and PAR2 (p = 0.02) was significantly increased compared to that of the control group. The 10 μg/kg FSLLRY-NH2 injection significantly increased the micturition interval of CBI rats (p = 0.03). The percentage of UP-II-positive cells on the urothelium with immunohistochemical staining was significantly lower in the CBI group than in the control group (p < 0.01). Chronic ischemia induces urothelial barrier dysfunction via impairing UP II, consequently inducing MC infiltration into the bladder wall and increased PAR2 expression. PAR2 activation by MCT may contribute to bladder hyperactivity.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3