Transcriptomic Changes Following Induced De-Masculinisation of Australian Red Claw Crayfish Cherax quadricarinatus

Author:

Smith Grace12,Glendinning Susan12,Ventura Tomer12ORCID

Affiliation:

1. Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia

2. School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia

Abstract

The Australian red claw crayfish Cherax quadricarinatus, an emerging species within the freshwater aquaculture trade, is not only an ideal species for commercial production due to its high fecundity, fast growth, and physiological robustness but also notoriously invasive. Investigating the reproductive axis of this species has been of great interest to farmers, geneticists, and conservationists alike for many decades; however, aside from the characterisation of the key masculinising insulin-like androgenic gland hormone (IAG) produced by the male-specific androgenic gland (AG), little remains known about this system and the downstream signalling cascade involved. This investigation used RNA interference to silence IAG in adult intersex C. quadricarinatus (Cq-IAG), known to be functionally male but genotypically female, successfully inducing sexual redifferentiation in all individuals. To investigate the downstream effects of Cq-IAG knockdown, a comprehensive transcriptomic library was constructed, comprised of three tissues within the male reproductive axis. Several factors known to be involved in the IAG signal transduction pathway, including a receptor, binding factor, and additional insulin-like peptide, were found to not be differentially expressed in response to Cq-IAG silencing, suggesting that the phenotypic changes observed may have occurred through post-transcriptional modifications. Many downstream factors displayed differential expression on a transcriptomic level, most notably related to stress, cell repair, apoptosis, and cell proliferation. These results suggest that IAG is required for sperm maturation, with necrosis of arrested tissue occurring in its absence. These results and the construction of a transcriptomic library for this species will inform future research involving reproductive pathways as well as biotechnological developments in this commercially and ecologically significant species.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3