Comparison of Glyphosate-Degradation Ability of Aldo-Keto Reductase (AKR4) Proteins in Maize, Soybean and Rice

Author:

Chen Ronghua1,Wang Siwei1,Sun Yue1ORCID,Li Haiqing1,Wan Shuqing1,Lin Fei1ORCID,Xu Hanhong1

Affiliation:

1. State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China

Abstract

Genes that participate in the degradation or isolation of glyphosate in plants are promising, for they endow crops with herbicide tolerance with a low glyphosate residue. Recently, the aldo-keto reductase (AKR4) gene in Echinochloa colona (EcAKR4) was identified as a naturally evolved glyphosate-metabolism enzyme. Here, we compared the glyphosate-degradation ability of theAKR4 proteins from maize, soybean and rice, which belong to a clade containing EcAKR4 in the phylogenetic tree, by incubation of glyphosate with AKR proteins both in vivo and in vitro. The results indicated that, except for OsALR1, the other proteins were characterized as glyphosate-metabolism enzymes, with ZmAKR4 ranked the highest activity, and OsAKR4-1 and OsAKR4-2 exhibiting the highest activity among the AKR4 family in rice. Moreover, OsAKR4-1 was confirmed to endow glyphosate-tolerance at the plant level. Our study provides information on the mechanism underlying the glyphosate-degradation ability of AKR proteins in crops, which enables the development of glyphosate-resistant crops with a low glyphosate residue, mediated by AKRs.

Funder

Guangdong Modern Agricultural Industry Generic Key Technology Research and Development Innovation Team Project

Generic Technique Innovation Team Construction of Modern Agriculture of Guangdong Province

Project of Science and Technology in Guangdong Province

Science and Technology Planning Project of Guangdong Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3