Proteolysis of Micellar β-Casein by Trypsin: Secondary Structure Characterization and Kinetic Modeling at Different Enzyme Concentrations

Author:

Vorob’ev Mikhail M.1ORCID,Açıkgöz Burçin Dersu2ORCID,Güler Günnur34,Golovanov Andrey V.1,Sinitsyna Olga V.1ORCID

Affiliation:

1. A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 28 ul. Vavilova, 119991 Moscow, Russia

2. Division of Bioengineering, Graduate School, Izmir University of Economics, Izmir 35330, Turkey

3. Biophysics Laboratory, Department of Physics, Izmir Institute of Technology, Urla, Izmir 35430, Turkey

4. Biomedical Bioengineering, Izmir University of Economics, Sakarya Cad., Izmir 35330, Turkey

Abstract

Tryptic proteolysis of protein micelles was studied using β-casein (β-CN) as an example. Hydrolysis of specific peptide bonds in β-CN leads to the degradation and rearrangement of the original micelles and the formation of new nanoparticles from their fragments. Samples of these nanoparticles dried on a mica surface were characterized by atomic force microscopy (AFM) when the proteolytic reaction had been stopped by tryptic inhibitor or by heating. The changes in the content of β-sheets, α-helices, and hydrolysis products during proteolysis were estimated by using Fourier-transform infrared (FTIR) spectroscopy. In the current study, a simple kinetic model with three successive stages is proposed to predict the rearrangement of nanoparticles and the formation of proteolysis products, as well as changes in the secondary structure during proteolysis at various enzyme concentrations. The model determines for which steps the rate constants are proportional to the enzyme concentration, and in which intermediate nano-components the protein secondary structure is retained and in which it is reduced. The model predictions were in agreement with the FTIR results for tryptic hydrolysis of β-CN at different concentrations of the enzyme.

Funder

RFBR

TÜBİTAK-2532

Ministry of Science and Higher Education of the Russian Federation

The Scientific and Technological Research Council of Turkey

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference48 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3