Dealloyed Porous NiFe2O4/NiO with Dual-Network Structure as High-Performance Anodes for Lithium-Ion Batteries

Author:

Jin Chao12ORCID,Wang Zigang1,Luo Chang1,Qin Chunling1ORCID,Li Yongyan1,Wang Zhifeng12ORCID

Affiliation:

1. School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China

2. Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300401, China

Abstract

As high-capacity anode materials, spinel NiFe2O4 aroused extensive attention due to its natural abundance and safe working voltage. For widespread commercialization, some drawbacks, such as rapid capacity fading and poor reversibility due to large volume variation and inferior conductivity, urgently require amelioration. In this work, NiFe2O4/NiO composites with a dual-network structure were fabricated by a simple dealloying method. Benefiting from the dual-network structure and composed of nanosheet networks and ligament-pore networks, this material provides sufficient space for volume expansion and is able to boost the rapid transfer of electrons and Li ions. As a result, the material exhibits excellent electrochemical performance, retaining 756.9 mAh g−1 at 200 mA g−1 after cycling for 100 cycles and retaining 641.1 mAh g−1 after 1000 cycles at 500 mA g−1. This work provides a facile way to prepare a novel dual-network structured spinel oxide material, which can promote the development of oxide anodes and also dealloying techniques in broad fields.

Funder

Natural Science Foundation of Hebei Province, China

Hebei Higher Education Teaching Reform Research and Practice Project, China

Science and Technology Project of Hebei Education Department, China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3