Platelet-Derived Extracellular Vesicles Promote Tenogenic Differentiation of Stem Cells on Bioengineered Living Fibers

Author:

Graça Ana L.12ORCID,Domingues Rui M. A.12ORCID,Gomez-Florit Manuel3ORCID,Gomes Manuela E.12ORCID

Affiliation:

1. 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal

2. ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Guimarães, Portugal

3. Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain

Abstract

Tendon mimetic scaffolds that recreate the tendon hierarchical structure and niche have increasing potential to fully restore tendon functionality. However, most scaffolds lack biofunctionality to boost the tenogenic differentiation of stem cells. In this study, we assessed the role of platelet-derived extracellular vesicles (EVs) in stem cells’ tenogenic commitment using a 3D bioengineered in vitro tendon model. First, we relied on fibrous scaffolds coated with collagen hydrogels encapsulating human adipose-derived stem cells (hASCs) to bioengineer our composite living fibers. We found that the hASCs in our fibers showed high elongation and cytoskeleton anisotropic organization, typical of tenocytes. Moreover, acting as biological cues, platelet-derived EVs boosted the hASCs’ tenogenic commitment, prevented phenotypic drift, enhanced the deposition of the tendon-like extracellular matrix, and induced lower collagen matrix contraction. In conclusion, our living fibers provided an in vitro system for tendon tissue engineering, allowing us to study not only the tendon microenvironment but also the influence of biochemical cues on stem cell behavior. More importantly, we showed that platelet-derived EVs are a promising biochemical tool for tissue engineering and regenerative medicine applications that are worthy of further exploration, as paracrine signaling might potentiate tendon repair and regeneration.

Funder

ERC CoG MagTendon

EC Twinning project Achilles

Fundação para a Ciência e a Tecnologia

Carlos III Health Institute

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference69 articles.

1. Rescue plan for Achilles: Therapeutics steering the fate and functions of stem cells in tendon wound healing;Schneider;Adv. Drug Deliv. Rev.,2018

2. Steinmann, S., Pfeifer, C.G., Brochhausen, C., and Docheva, D. (2020). Spectrum of tendon pathologies: Triggers, trails and end-state. Int. J. Mol. Sci., 21.

3. (2017). GBD 2016 Disease and Injury Incidence and Prevalence Collaborators Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet, 390, 1211–1259.

4. Impact of chronic Achilles tendinopathy on health-related quality of life, work performance, healthcare utilisation and costs;Verhaar;BMJ Open Sport Exerc. Med.,2021

5. Tendon injury and repair—A perspective on the basic mechanisms of tendon disease and future clinical therapy;Snedeker;Acta Biomater.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3