Sb-Phenyl-N-methyl-5,6,7,12-tetrahydrodibenz[c,f][1,5]azastibocine Induces Perlecan Core Protein Synthesis in Cultured Vascular Endothelial Cells

Author:

Hara Takato1,Konishi Tomoko2,Yasuike Shuji3ORCID,Fujiwara Yasuyuki4ORCID,Yamamoto Chika1,Kaji Toshiyuki5ORCID

Affiliation:

1. Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan

2. Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa, Ishikawa 920-1181, Japan

3. School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan

4. School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432 Horinouchi, Hachioji, Tokyo 192-0392, Japan

5. Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chba 278-8510, Japan

Abstract

Vascular endothelial cells synthesize and secrete perlecan, a large heparan sulfate proteoglycan that increases the anticoagulant activity of vascular endothelium by inducing antithrombin III and intensifying fibroblast growth factor (FGF)-2 activity to promote migration and proliferation in the repair process of damaged endothelium during the progression of atherosclerosis. However, the exact regulatory mechanisms of endothelial perlecan expression remain unclear. Since organic–inorganic hybrid molecules are being developed rapidly as tools to analyze biological systems, we searched for a molecular probe to analyze these mechanisms using a library of organoantimony compounds and found that the Sb-phenyl-N-methyl-5,6,7,12-tetrahydrodibenz[c,f][1,5]azastibocine (PMTAS) molecule promotes the expression of perlecan core protein gene without exhibiting cytotoxicity in vascular endothelial cells. In the present study, we characterized proteoglycans synthesized by cultured bovine aortic endothelial cells using biochemical techniques. The results indicated that PMTAS selectively induced perlecan core protein synthesis, without affecting the formation of its heparan sulfate chain, in vascular endothelial cells. The results also implied that this process is independent of the endothelial cell density, whereas in vascular smooth muscle cells, it occurred only at high cell density. Thus, PMTAS would be a useful tool for further studies on the mechanisms underlying perlecan core protein synthesis in vascular cells, which is critical in the progression of vascular lesions, such as those during atherosclerosis.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3