Discovery of New Heterocyclic/Benzofuran Hybrids as Potential Anti-Inflammatory Agents: Design, Synthesis, and Evaluation of the Inhibitory Activity of Their Related Inflammatory Factors Based on NF-κB and MAPK Signaling Pathways

Author:

Chen Yangling1,Chen Rui1,Yuan Renyikun1,Huo Lini12,Gao Hongwei1,Zhuo Youqiong1,Chen Xinxin1,Zhang Chenwei1,Yang Shilin1

Affiliation:

1. College of pharmacy, Guangxi University of Chinese Medicine, Nanning 530222, China

2. Guangxi Key Laboratory of Zhuang and Yao Medicine, Guangxi University of Chinese Medicine, Nanning 530222, China

Abstract

NF-κB and MAPK are classic inflammation signaling pathways which regulate inflammation signal transmission and induce the expression of many inflammatory factors. Based on the potent anti-inflammatory activity of benzofuran and its derivatives, several new heterocyclic/benzofuran hybrids were first designed and synthesized by molecular hybridization. Their structure was confirmed by 1H NMR, 13C NMR, HRMS or X-single crystal diffraction. The anti-inflammatory activity of these new compounds was screened by compounds; compound 5d exhibited an excellent inhibitory effect on the generation of NO (IC50 = 52.23 ± 0.97 μM), and low cytotoxicity (IC50 > 80 μM) against the RAW-264.7 cell lines. To further elucidate the possible anti-inflammatory mechanisms of compound 5d, the hallmark protein expressions of the NF-κB and MAPK pathways were studied in LPS-stimulated RAW264.7 cells. The results indicate that compound 5d not only significantly inhibits the phosphorylation levels of IKKα/IKKβ, IKβα, P65, ERK, JNK and P38 in the classic MAPK/NF-κB signaling pathway in a dose-dependent manner, but also down-regulates the secretion of pro-inflammatory factors such as NO, COX-2, TNF-α and IL-6. Further, the in vivo anti-inflammatory activity of compound 5d indicated that it could regulate the involvement of neutrophils, leukocytes and lymphocytes in inflammation processes, and reduce the expression of IL-1β, TNF-α and IL-6 in serum and tissues. These results strongly suggest that the piperazine/benzofuran hybrid 5d has a good potential for developing an anti-inflammatory lead compound, and the anti-inflammatory mechanism might be related to the NF-κB and MAPK signaling pathways.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference35 articles.

1. Markers of inflammation;Germolec;Methods Mol. Biol.,2010

2. Acute Inflammation and Metabolism;Varela;Inflammation,2018

3. Function and Activation of NF-kappaB in the Immune System;Baeuerle;Annu. Rev. Immunol.,1994

4. NF-κB and the Transcriptional Control of Inflammation;Mitchell;Int. Rev. Cell. Mol. Biol.,2018

5. NF-κB: At the Borders of Autoimmunity and Inflammation;Barnabei;Front. Immunol.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3