Transcriptome and Metabolome Analysis Reveals Salt-Tolerance Pathways in the Leaves and Roots of ZM-4 (Malus zumi) in the Early Stages of Salt Stress

Author:

Wang Dajiang12ORCID,Wang Kun2,Sun Simiao2,Yan Peng3,Lu Xiang12ORCID,Liu Zhao12,Li Qingshan12,Li Lianwen2,Gao Yuan2,Liu Jihong14ORCID

Affiliation:

1. Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Agricultural College, Shihezi University, Shihezi 832003, China

2. National Repository of Apple Germplasm Resources, Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Xingcheng 125100, China

3. Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, No. 403 Nanchang Road, Urumqi 830091, China

4. Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China

Abstract

The breeding of salt-tolerant rootstock relies heavily on the availability of salt-tolerant Malus germplasm resources. The first step in developing salt-tolerant resources is to learn their molecular and metabolic underpinnings. Hydroponic seedlings of both ZM-4 (salt-tolerant resource) and M9T337 (salt-sensitive rootstock) were treated with a solution of 75 mM salinity. ZM-4’s fresh weight increased, then decreased, and then increased again after being treated with NaCl, whereas M9T337′s fresh weight continued to decrease. The results of transcriptome and metabolome after 0 h (CK) and 24 h of NaCl treatment showed that the leaves of ZM-4 had a higher content of flavonoids (phloretinm, naringenin-7-O-glucoside, kaempferol-3-O-galactoside, epiafzelechin, etc.) and the genes (CHI, CYP, FLS, LAR, and ANR) related to the flavonoid synthesis pathway showed up-regulation, suggesting a high antioxidant capacity. In addition to the high polyphenol content (L-phenylalanine, 5-O-p-coumaroyl quinic acid) and the high related gene expression (4CLL9 and SAT), the roots of ZM-4 exhibited a high osmotic adjustment ability. Under normal growing conditions, the roots of ZM-4 contained a higher content of some amino acids (L-proline, tran-4-hydroxy-L-prolin, L-glutamine, etc.) and sugars (D−fructose 6−phosphate, D−glucose 6−phosphate, etc.), and the genes (GLT1, BAM7, INV1, etc.) related to these two pathways were highly expressed. Furthermore, some amino acids (S-(methyl) glutathione, N-methyl-trans-4-hydroxy-L-proline, etc.) and sugars (D-sucrose, maltotriose, etc.) increased and genes (ALD1, BCAT1, AMY1.1, etc.) related to the pathways showed up-regulation under salt stress. This research provided theoretical support for the application of breeding salt-tolerant rootstocks by elucidating the molecular and metabolic mechanisms of salt tolerance during the early stages of salt treatment for ZM-4.

Funder

Natural Science Foundation of Liaoning

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference78 articles.

1. Gene expression profiling of plants under salt stress;Jamil;Crit. Rev. Plant Sci.,2011

2. Field identification of salt tolerance of apple rootstocks;Du;China Fruits,2001

3. Abiotic stress signaling and responses in plants;Zhu;Cell,2016

4. The transcription factor FcWRKY40 of Fortunella crassifolia functions positively in salt tolerance through modulation of ion homeostasis and proline biosynthesis by directly regulating SOS2 and P5CS1 homologs;Dai;New Phytol.,2018

5. Salinity stress: Its impact on plant growth and development;Sodani;Agric. Food E-Newsl.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3