Screening of Candidate Effectors from Magnaporthe oryzae by In Vitro Secretomic Analysis

Author:

Li Guanjun1,Shi Qingchuan1,He Yanqiu2,Zhu Jie1,Zhong Mingluan1,Tong Lingjie1,Li Huaping1ORCID,Nie Yanfang13,Li Yunfeng1ORCID

Affiliation:

1. Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China

2. Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China

3. College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China

Abstract

Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases of rice worldwide. Secreted proteins play essential roles during a M. oryzae–rice interaction. Although much progress has been made in recent decades, it is still necessary to systematically explore M. oryzae-secreted proteins and to analyze their functions. This study employs a shotgun-based proteomic analysis to investigate the in vitro secretome of M. oryzae by spraying fungus conidia onto the PVDF membrane to mimic the early stages of infection, during which 3315 non-redundant secreted proteins were identified. Among these proteins, 9.6% (319) and 24.7% (818) are classified as classically or non-classically secreted proteins, while the remaining 1988 proteins (60.0%) are secreted through currently unknown secretory pathway. Functional characteristics analysis show that 257 (7.8%) and 90 (2.7%) secreted proteins are annotated as CAZymes and candidate effectors, respectively. Eighteen candidate effectors are selected for further experimental validation. All 18 genes encoding candidate effectors are significantly up- or down-regulated during the early infection process. Sixteen of the eighteen candidate effectors cause the suppression of BAX-mediated cell death in Nicotiana benthamiana by using an Agrobacterium-mediated transient expression assay, suggesting their involvement in pathogenicity related to secretion effectors. Our results provide high-quality experimental secretome data of M. oryzae and will expand our knowledge on the molecular mechanisms of M. oryzae pathogenesis.

Funder

Guangdong Basic and Applied Basic Research Foundation

Guangzhou Science and Technology Program

National Natural Science Foundation of China

Project for Key Technology R&D Innovation Team in Modern Agriculture, Guangdong Province

China Agriculture Research System of MOF and MARA

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3