Effect of Fibrillization pH on Gelation Viscoelasticity and Properties of Biofabricated Dense Collagen Matrices via Gel Aspiration-Ejection

Author:

Rezabeigi Ehsan1,Griffanti Gabriele1,Nazhat Showan N.1

Affiliation:

1. Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada

Abstract

Reconstituted hydrogels based on the self-assembly of acid-solubilized collagen molecules have been extensively used as in vitro models and precursors in biofabrication processes. This study investigated the effect of fibrillization pH—ranging from 4 to 11—on real-time rheological property changes during the gelation of collagen hydrogels and its interplay with the properties of subsequently biofabricated dense collagen matrices generated via automated gel aspiration-ejection (GAE). A contactless, nondestructive technique was used to characterize the temporal progression in shear storage modulus (G’, or stiffness) during collagen gelation. There was a relative increase in G′ of the hydrogels from 36 to 900 Pa with an increase in gelation pH. Automated GAE, which simultaneously imparts collagen fibrillar compaction and alignment, was then applied to these precursor collagen hydrogels to biofabricate native extracellular matrix-like densified gels. In line with viscoelastic properties, only hydrogels fibrillized in the 6.5 < pH ≤ 10 range could be densified via GAE. There was an increase in both fibrillar density and alignment in the GAE-derived matrices with an increase in gelation pH. These factors, combined with a higher G′ in the alkaline precursor hydrogels, led to a significant increase in the micro-compressive modulus of GAE-densified gels of pH 9 and 10. Furthermore, NIH/3T3 fibroblast-seeded GAE-derived matrices densified from gels fibrillized in the pH range of 7 to 10 exhibited low cell mortality with >80% viability. It is anticipated that the results of this study can be potentially applicable to other hydrogel systems, as well as biofabrication techniques involving needles or nozzles, such as injection and bioprinting.

Funder

NSERC

FRQNT

CFI

McGill University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3