Comparative Proteomics Analysis of Exosomes Identifies Key Pathways and Protein Markers Related to Breast Cancer Metastasis

Author:

Shen Shichen12,Tu Chengjian12,Shen He3,Li Jun12,Frangou Costa4,Zhang Jianmin3ORCID,Qu Jun12ORCID

Affiliation:

1. Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA

2. New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA

3. Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA

4. Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA

Abstract

Proteomics analysis of circulating exosomes derived from cancer cells represents a promising approach to the elucidation of cell–cell communication and the discovery of putative biomarker candidates for cancer diagnosis and treatment. Nonetheless, the proteome of exosomes derived from cell lines with different metastatic capabilities still warrants further investigation. Here, we present a comprehensive quantitative proteomics investigation of exosomes isolated from immortalized mammary epithelial cells and matched tumor lines with different metastatic potentials in an attempt to discover exosome markers specific to breast cancer (BC) metastasis. A total of 2135 unique proteins were quantified with a high confidence level from 20 isolated exosome samples, including 94 of the TOP 100 exosome markers archived by ExoCarta. Moreover, 348 altered proteins were observed, among which several metastasis-specific markers, including cathepsin W (CATW), magnesium transporter MRS2 (MRS2), syntenin-2 (SDCB2), reticulon-4 (RTN), and UV excision repair protein RAD23 homolog (RAD23B), were also identified. Notably, the abundance of these metastasis-specific markers corresponds well with the overall survival of BC patients in clinical settings. Together, these data provide a valuable dataset for BC exosome proteomics investigation and prominently facilitate the elucidation of the molecular mechanisms underlying primary tumor development and progression.

Funder

Roswell Park Cancer Institute and National Cancer Institute

Roswell Park Alliance Foundation, and NCI

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference50 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3