Thermal Titration Molecular Dynamics (TTMD): Not Your Usual Post-Docking Refinement

Author:

Menin Silvia1ORCID,Pavan Matteo1ORCID,Salmaso Veronica1,Sturlese Mattia1ORCID,Moro Stefano1ORCID

Affiliation:

1. Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy

Abstract

Molecular docking is one of the most widely used computational approaches in the field of rational drug design, thanks to its favorable balance between the rapidity of execution and the accuracy of provided results. Although very efficient in exploring the conformational degrees of freedom available to the ligand, docking programs can sometimes suffer from inaccurate scoring and ranking of generated poses. To address this issue, several post-docking filters and refinement protocols have been proposed throughout the years, including pharmacophore models and molecular dynamics simulations. In this work, we present the first application of Thermal Titration Molecular Dynamics (TTMD), a recently developed method for the qualitative estimation of protein-ligand unbinding kinetics, to the refinement of docking results. TTMD evaluates the conservation of the native binding mode throughout a series of molecular dynamics simulations performed at progressively increasing temperatures with a scoring function based on protein-ligand interaction fingerprints. The protocol was successfully applied to retrieve the native-like binding pose among a set of decoy poses of drug-like ligands generated on four different pharmaceutically relevant biological targets, including casein kinase 1δ, casein kinase 2, pyruvate dehydrogenase kinase 2, and SARS-CoV-2 main protease.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference73 articles.

1. Natural Products in Drug Discovery;Harvey;Drug Discov. Today,2008

2. The Role of Serendipity in Drug Discovery;Ban;Dialogues Clin. Neurosci.,2006

3. From Magic Bullets to Designed Multiple Ligands;Morphy;Drug Discov. Today,2004

4. The Process of Structure-Based Drug Design;Anderson;Chem. Biol.,2003

5. Computational Methods in Drug Discovery;Sliwoski;Pharmacol. Rev.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3