Phytofabrication of Silver Nanoparticles Using Trigonella foenum-graceum L. Leaf and Evaluation of Its Antimicrobial and Antioxidant Activities

Author:

Moond Monika1ORCID,Singh Sushila1ORCID,Sangwan Seema2,Rani Savita3ORCID,Beniwal Anuradha1,Rani Jyoti1,Kumari Anita4,Rani Indu1,Devi Parvesh1

Affiliation:

1. Department of Chemistry, CCS Haryana Agricultural University, Hisar 125004, India

2. Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India

3. Department of Horticulture, CCS Haryana Agricultural University, Hisar 125004, India

4. Department of Plant Physiology, CCS Haryana Agricultural University, Hisar 125004, India

Abstract

Silver nanoparticles (AgNPs) were fabricated using Trigonella foenum-graceum L. leaf extract, belonging to the variety HM 425, as leaf extracts are a rich source of phytochemicals such as polyphenols, flavonoids, and sugars, which function as reducing, stabilizing, and capping agents in the reduction of silver ions to AgNPs. These phytochemicals were quantitatively determined in leaf extracts, and then, their ability to mediate AgNP biosynthesis was assessed. The optical, structural, and morphological properties of as-synthesized AgNPs were characterized using UV-visible spectroscopy, a particle size analyzer (PSA), FESEM (field emission scanning electron microscopy), HRTEM (high-resolution transmission electron microscopy), and FTIR (Fourier transform infrared spectroscopy). HRTEM analysis demonstrated the formation of spherically shaped AgNPs with a diameter of 4–22 nm. By using the well diffusion method, the antimicrobial potency of AgNPs and leaf extract was evaluated against microbial strains of Staphylococcus aureus, Xanthomonas spp., Macrophomina phaseolina, and Fusarium oxysporum. AgNPs showed significant antioxidant efficacy with IC50 = 426.25 µg/mL in comparison to leaf extract with IC50 = 432.50 µg/mL against 2,2-diphenyl-1-picrylhydrazyl (DPPH). The AgNPs (64.36 mg AAE/g) demonstrated greater total antioxidant capacity using the phosphomolybdneum assay compared to the aqueous leaf extract (55.61 mg AAE/g) at a concentration of 1100 μg/mL. Based on these findings, AgNPs may indeed be useful for biomedical applications and drug delivery systems in the future.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3