Synthesis and Structural Studies of New Selenium Derivatives Based on Covalent Functionalization of MWCNTs

Author:

Żarska Sandra1,Szukiewicz Rafał2ORCID,Coseri Sergiu3ORCID,Pavlyuk Volodymyr1ORCID,Krasowska Dorota4ORCID,Ciesielski Wojciech1

Affiliation:

1. Institute of Chemistry, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland

2. Faculty of Physics and Astronomy, Institute of Experimental Physics, University of Wroclaw, 50-204 Wroclaw, Poland

3. Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania

4. Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza Str., 90-001 Lodz, Poland

Abstract

Modifying the surface of nanomaterials, such as carbon nanotubes, by introducing heteroatoms or larger functional groups into the structure causes a change in chemical properties—manifested in the increase in reactivity as well as a change in conductivity. This paper presents the new selenium derivatives obtained by a covalent functionalization of brominated multi-walled carbon nanotubes (MWCNTs). The synthesis was carried out in mild conditions (3 days at room temperature), and was additionally assisted with ultrasound. After a two-stage purification, the obtained products were identified and characterized by the following methods: scanning and transmission electron microscopy imaging (SEM and TEM), energy dispersive X-ray microanalysis (EDX), X-ray photoelectron spectroscopy (XPS), Raman and nuclear magnetic resonance (NMR), and X-ray diffraction (XRD). In the selenium derivatives of carbon nanotubes, the content of selenium and phosphorus reached 14 and 4.2 wt%, respectively.

Funder

National Science Centre

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3