Affiliation:
1. MITR, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland
2. Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
Abstract
Phosphorus-containing metabolites cover a large molecular diversity and represent an important domain of small molecules which are highly relevant for life and represent essential interfaces between biology and chemistry, between the biological and abiotic world. The large but not unlimited amount of phosphate minerals on our planet is a key resource for living organisms on our planet, while the accumulation of phosphorus-containing waste is associated with negative effects on ecosystems. Therefore, resource-efficient and circular processes receive increasing attention from different perspectives, from local and regional levels to national and global levels. The molecular and sustainability aspects of a global phosphorus cycle have become of much interest for addressing the phosphorus biochemical flow as a high-risk planetary boundary. Knowledge of balancing the natural phosphorus cycle and the further elucidation of metabolic pathways involving phosphorus is crucial. This requires not only the development of effective new methods for practical discovery, identification, and high-information content analysis, but also for practical synthesis of phosphorus-containing metabolites, for example as standards, as substrates or products of enzymatic reactions, or for discovering novel biological functions. The purpose of this article is to review the advances which have been achieved in the synthesis and analysis of phosphorus-containing metabolites which are biologically active.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Reference150 articles.
1. Walsh, C.T. (2021). The Chemical Biology of Phosphorus, Royal Society of Chemistry.
2. Planetary boundaries: Guiding human development on a changing planet;Steffen;Science,2015
3. A brief history of phosphorus: From the philosopher’s stone to nutrient recovery and reuse;Ashley;Chemosphere,2011
4. Kageyama, M., Nakamura, K., and Oshima, T. (1981). Where There’s Life, There’s Phosphorus, Japan Science Society Press.
5. Remnants of an Ancient Metabolism without Phosphate;Goldford;Cell,2017
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献