The Integration of Remote Sensing and Field Surveys to Detect Ecologically Damaged Areas for Restoration in South Korea

Author:

Lee Kyungil,Sung Hyun Chan,Seo Joung-Young,Yoo Youngjae,Kim Yoonji,Kook Jung Hyun,Jeon Seong WooORCID

Abstract

Ecological damage refers to the reduction in the value of the environment due to human activities such as development. The intensity of ecosystem damage is worsening worldwide. Although the importance of restoration projects to reduce ecosystem damage is increasing, they are difficult to carry out, owing to the absence of data and monitoring of damaged areas. In this study, ecologically damaged areas for restoration in South Korea were detected using remote sensing and field surveys. For the analysis, national standardized vector datasets and Google Earth images were used; field surveys were conducted from 2018 to early 2020. Our results showed that 62% of the ecological damage that occurred in South Korea existed in forest ecosystems; the damaged areas were mostly smaller than 50,000 m2. Additionally, most of the causes and types of damage due to human activities such as development were soil erosion related. The results also suggest the importance of obtaining monitoring data on ecologically damaged areas and the importance of establishing an appropriate restoration plan using this data.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3