Punching Shear Behavior of Two-Way Concrete Slabs Reinforced with Glass-Fiber-Reinforced Polymer (GFRP) Bars

Author:

Ju Minkwan,Park Kyoungsoo,Park Cheolwoo

Abstract

This study investigated the punching shear behavior of full-scale, two-way concrete slabs reinforced with glass fiber reinforced polymer (GFRP) bars, which are known as noncorrosive reinforcement. The relatively low modulus of elasticity of GFRP bars affects the large deflection of flexural members, however, applying these to two-way concrete slabs can compensate the weakness of the flexural stiffness due to an arching action with supporting girders. The test results demonstrated that the two-way concrete slabs with GFRP bars satisfied the allowable deflection and crack width under the service load specified by the design specification even in the state of the minimum reinforcement ratio. Previous predicting equations and design equations largely overestimated the measured punching shear strength when the slab was supported by reinforced concrete (RC) girders. The strength difference can be explained by the fact that the flexural behavior of the supporting RC beam girders reduces the punching shear strength because of the additional deflection of RC beam girders. Therefore, for more realistic estimations of the punching shear strength of two-way concrete slabs with GFRP bars, the boundary conditions of the concrete slabs should be carefully considered. This is because the stiffness degradation of supporting RC beam girders may influence the punching shear strength.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference26 articles.

1. Strengthening Reinforced Concrete Structures with Externally-Bonded Fibre Reinforced Polymers,2006

2. Designing and Testing of Concrete Bridge Decks Reinforced with Glass FRP Bars

3. Punching Shear Behavior of Fiber Reinforced Polymers Reinforced Concrete Flat Slabs: Experimental Study

4. Punching of two way concrete slabs with fiber-reinforced polymer reinforcing bars or grids;Ospina;ACI Struct. J.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3