Author:
Jiang Xiaowu,Han Jie,Cao Lunan,Bao Yan,Shi Jian,Zhang Jing,Ni Lingli,Chen Jing
Abstract
Atom Transfer Radical Polymerization (ATRP) has been a powerful tool to synthesize well-defined functional polymers, which are widely used in biology, drug/gene delivery and antibacterial materials, etc. However, the potential toxic residues in polymer reduced its service life and limited its applications. In order to overcome the problem, in this work, a novel polymerization system of activators generated by electron transfer for atom transfer radical polymerization (AGET ATRP) for synchronous separation of the metal catalyst and byproduct of reducing agent was developed, using thiol-grafted cellulose paper (Cell-SH) as a solid reducing agent. The polymerization kinetics were investigated in detail, and the “living” features of the novel polymerization system were confirmed by chain-end analysis and chain extension experiment for the resultant polymethyl methacrylate (PMMA). It is noted that the copper residual in obtained PMMA was less than 20 ppm, just by filtering the sheet-like byproduct of the reducing agent.
Funder
Natural Science Fund for Colleges and Universities in Jiangsu Province of China
the National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Subject
Polymers and Plastics,General Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献