The Chain Distribution Tensor: Linking Nonlinear Rheology and Chain Anisotropy in Transient Polymers

Author:

Lalitha Sridhar ShankarORCID,Vernerey Franck

Abstract

Transient polymer networks are ubiquitous in natural and engineered materials and contain cross-links that can reversibly break and re-form. The dynamic nature of these bonds allows for interesting mechanical behavior, some of which include nonlinear rheological phenomena such as shear thickening and shear thinning. Specifically, physically cross-linked networks with reversible bonds are typically observed to have viscosities that depend nonlinearly on shear rate and can be characterized by three flow regimes. In slow shear, they behave like Newtonian fluids with a constant viscosity. With further increase in shear rate, the viscosity increases nonlinearly to subsequently reach a maximum value at the critical shear rate. At this point, network fracture occurs followed by a reduction in viscosity (shear-thinning) with a further increase in shear rate. The underlying mechanism of shear thickening in this process is still unclear with debates between a conversion of intra-chain to inter-chain cross-linking and nonlinear chain stretch under high tension. In this paper, we provide a new framework to describe the nonlinear rheology of transient polymer networks with the so-called chain distribution tensor using recent advances from the transient network theory. This tensor contains quantitatively and statistical information of the chain alignment and possible anisotropy that affect network behavior and mechanics. We investigate shear thickening as a primary result of non-Gaussian chain behavior and derive a relationship for the nonlinear viscosity in terms of the non-dimensional Weissenberg number. We further address the criterion for network fracture at the critical shear rate by introducing a critical chain force when bond dissociation is suddenly accelerated. Finally, we discuss the role of cross-linker density on viscosity using a “sticky” reptation mechanism in the context of previous studies on metallo-supramolecular networks with reversible cross-linkers.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3