Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts

Author:

Setyantho Gigih RahmandhaniORCID,Park Hansaem,Chang Seongju

Abstract

Semi-transparent photovoltaic (STPV) windows, one of the building façade elements, can generate electricity and provide a certain amount of daylight for occupants. Nevertheless, expensive cost and unsatisfying indoor daylight performance in the room are common problems with STPV windows. This study investigates the thermal, daylight, energy, and life-cycle cost performance of STPV windows by considering varied window-to-wall ratios, building orientations, and STPV module types. The electricity balance index (elBI) indicator is proposed as one of the performance evaluation criteria. Two types of building models are established for this study: a rig-test building as the baseline building model and a KAIST campus research facility as the test building model along with the actual measurements and simulations using DesignBuilder. Results show that the STPV window in the Mediterranean climate demonstrates higher efficiency based on the elBI indicator. Decision-making analysis using the analytic hierarchy process and PROMETHEE II found weighting rates of 0.309, 0.076, and 0.465 for elBI, comfort, and cost criteria, respectively. Furthermore, lighting energy consumption becomes a critical variable for STPV module type selection, while a simple ON/OFF lighting control system can improve the elBI value by 0.02 ~ 0.04. Our research findings could potentially improve the decision-making process for building and urban energy systems selection in different climate types.

Funder

Korea Agency for Infrastructure Technology Advancement

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference70 articles.

1. International Energy Agency (IEA) World Energy Outlookhttps://www.iea.org/topics/world-energy-outlook

2. Sustainable Facades: Design Methods for High-Performance Building Envelopes;Aksamija,2013

3. Identification of Primary Factors Influencing Energy Consumption Patterns of Commercial and Residential Buildings

4. Solar façades: A review

5. A key review of building integrated photovoltaic (BIPV) systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3