Study on the Influence of Ventilation Speed on Smoke and Temperature Characteristics of Complex Underground Spaces

Author:

Ou Jianchun1,Wang Xinyu2,Ming Yuyang2,Sun Xixi3

Affiliation:

1. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China

2. School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China

3. Faculty of Geoscience and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China

Abstract

This study explores the intricate behaviors of smoke flow, temperature distribution, carbon monoxide (CO) levels, and visibility dynamics within complex underground spaces during fire incidents. A key revelation is the profound impact of ventilation speed, with the identification of a critical range between 2 and 3 m/s that consistently proves to be instrumental in curbing smoke-related hazards and ensuring the safe evacuation of personnel. Furthermore, this paper underscores the influence of accelerated longitudinal winds on temperature profiles, particularly under high HRR conditions, underscoring the importance of accounting for wind effects in comprehensive fire response strategies. Regarding CO concentration, which is a critical safety concern, this study demonstrates that higher ventilation speeds effectively reduce hazardous gas levels, thereby fortifying overall safety measures. The visibility is analyzed, with the findings indicating that elevated ventilation speeds enhance visibility, albeit with considerations about potential drawbacks on personnel evacuation due to excessive wind speed. In conclusion, this paper offers a comprehensive understanding of the pivotal role played by ventilation speed in underground space safety by encompassing smoke control and temperature management.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3