Thermal Characteristics of Epoxy Fire-Retardant Coatings under Different Fire Regimes

Author:

Gravit Marina1ORCID,Shabunina Daria1ORCID,Shcheglov Nikita1

Affiliation:

1. Peter the Great St. Petersburg Polytechnic University, Saint-Petersburg 195251, Russia

Abstract

Different systems of fire protection coatings are used to protect the metal structures of stories and trestles at oil and gas facilities from low (when filling cryogenic liquids) and high temperatures (in case of the possible development of a hydrocarbon fire regime). This paper presents the results of experiments of fireproof coatings on an epoxy binder after the simulation of a liquefied hydrocarbons spill and subsequent development of a hydrocarbon fire regime at the object of protection and exposure of structures to a standard fire regime. According to the experimental results, the temperatures on the samples at the end of the cryogenic exposure were determined and the time from the beginning of the thermal exposure to the limit state of the samples at a hydrocarbon and standard temperature fire regime was determined. As a result, temperature–time curves in the hydrocarbon and standard fire regimes were obtained, showing good convergence with the simulation results. The solution of the inverse task of heat conduction using finite element modeling made it possible to determine the thermophysical properties of the formed foam coke at the end of the fire tests of steel structures with intumescent coatings. It was determined that an average of 12 mm of intumescent coating thickness is required to achieve a fire protection efficiency of 120 min and for the expected impact of the hydrocarbon fire regime, the coating consumption should be increased by 1.5–2 times compared to the coating consumption for the standard regime.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3